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We use a recently developed extension of the weak-coupling diagrammatic determinantal quantum Monte
Carlo method to investigate the spin, charge, and single-particle spectral functions of the one-dimensional
quarter filled Holstein model with phonon frequency �0=0.1t. As a function of the dimensionless electron-
phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant 2kf charge
fluctuations. Emphasis is placed on the temperature dependence of the single-particle spectral function. At high
temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the
low-temperature Luttinger liquid phase we observe features that compare favorably with a bosonization ap-
proach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures
shows a quasiparticle gap that matches half the spin gap, whereas at temperatures above which this quasipar-
ticle gap closes characteristic features of the Luttinger liquid model are apparent. Our results are based on
lattice simulations on chains up to L=20 for two-particle properties and on cluster dynamical mean-field theory
calculations with clusters up to 12 sites for the single-particle spectral function.
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I. INTRODUCTION

Including phonon degrees of freedom in model calcula-
tions of correlated electron systems is challenging but neces-
sary for the understanding of many experiments. One can
mention the quasi-one-dimensional organics tetrathiaful-
valene tetracyanoquinodimethane �TTF-TCNQ� where pho-
toemission experiments are carried out down to 60 K just
above the Peierls transition.1 A detailed modeling of this ex-
perimental situation is bound to include both electronic
correlations2–5 as well as the phonon degrees of freedom.6 In
two dimensions the electron-phonon interactions lead to a
delicate interplay of superconductivity and charge-density
waves depending on the partial nesting properties of the
Fermi surface.7,8 More generally, the ability to efficiently in-
clude bosonic baths in quantum Monte Carlo �QMC� simula-
tions is a prerequisite for the implementation of extended
dynamical mean-field theories �DMFTs� �EDMFTs� where
self-consistency both at the two-particle �bosonic baths� and
single-particle levels is required.9,10

The aim of this paper is to test on the basis of a nontrivial
model a recently proposed generalization of the weak-
coupling diagrammatic determinantal QMC algorithm to in-
clude phonon degrees of freedom.11,12 The approach relies on
integrating out the phonon degrees of freedom at the expense
of a retarded interaction and then to expand around the non-
interacting point. Classes of diagrams at a given expansion
order can be expressed in terms of a determinant, with the
entries of the matrix being the noninteraction Green’s func-
tion. The summation over those classes of diagrams is car-
ried out with stochastic methods. Since the algorithm is ac-
tion based, the CPU time scales as ��L�3 �� is the inverse
temperature and L is the number of lattice sites� and is easily
embedded in dynamical mean-field self-consistency loops.
To obtain a full account of the physics, we have carried out
lattice simulations on lattices up to L=20 to extract two-
particle quantities and cluster dynamical mean-field theory

�CDMFT� �Ref. 13� calculations on embedded clusters up to
Lc=12 to investigate the single-particle spectral function. As
a function of the dimensionless electron-phonon coupling
and at fixed phonon frequency �0 / t=0.1, we interpret our
low-temperature results in terms of a transition from a Lut-
tinger liquid with gapless spin and charge modes to a Luther-
Emery liquid with gapful spin and gapless charge modes.14

This Peierls phase has dominant 2kf charge-density wave
�CDW� correlations. We have placed emphasis on the tem-
perature dependence of the single-particle spectral function
in both phases. At high temperatures and in both phases the
QMC data compares favorably with a self-consistent Born
approximation.15 The low-temperature properties in the Lut-
tinger liquid phase compare favorably to a bosonization ap-
proach retaining only forward scattering,16 whereas in the
Luther-Emery phase a quasiparticle gap matching half the
spin gap is apparent. The temperature dependence of the
single-particle spectral function in the Luther-Emery phase is
particularly rich; at temperature scales where the quasiparti-
cle gap closes, features of the Luttinger liquid model are
apparent.

The paper is organized as follows. In Sec. II we introduce
the model, and briefly review our implementation of the CD-
MFT. We refer the reader to Ref. 12 for a detailed description
of the QMC method. In Sec. III we present our numerical
results for two-particle and single-particle correlation func-
tions across the Peierls transition. For completeness sake,
Appendixes A and B summarize the self-consistent Born
approximation15 and elementary aspects of the Luttinger
model appropriate for the description of the low-energy ex-
citations of the Luttinger liquid phase.16

II. MODEL AND QUANTUM MONTE CARLO

The one-dimensional Holstein model we consider reads

Ĥ = �
k,�

��k�ĉk,�
† ĉk,� + g�

i
Q̂in̂i + �

i

P̂i
2

2M
+

k

2
Q̂i

2 �1�

PHYSICAL REVIEW B 78, 155124 �2008�

1098-0121/2008/78�15�/155124�11� ©2008 The American Physical Society155124-1

http://dx.doi.org/10.1103/PhysRevB.78.155124


with tight-binding dispersion relation ��k�=−2t cos�ka�−�.
ĉi,�

† creates an electron in Wannier state centered on lattice
site i and with z component of spin �, ĉk,�

† = 1
�L

�ie
ik·iĉi,�

† cre-
ates an electron in a Bloch state with crystal momentum k,
n̂i=��ĉi,�

† ĉi,� is the on-site particle number operator, and Q̂i

and P̂i correspond to the ion displacement and momentum.
In a recent paper,12 we showed how to include phonon

degrees of freedom in the weak-coupling diagrammatic de-
terminantal quantum Monte Carlo �DDQMC� algorithm.11 The
key ingredient is to integrate out the phonon degrees of free-
dom at the expense of a retarded interaction and then to
expand around the noninteracting limit. We refer the reader
to Ref. 12 for a detailed description of the algorithm.

Since dynamical two-particle quantities are notoriously
hard to compute within cluster methods,17 we have used the
DDQMC method to simulate the Holstein model on lattices up
to L=20 sites to compute those quantities. For the study of
the temperature dependence of the single-particle spectral
function, we have found it more convenient to adopt the
CDMFT on embedded cluster sizes up to Lc=12.

CDMFT as opposed to the dynamical cluster approxima-
tion �DCA� is particularly useful to tackle our problem. It is
a real-space method which allows for spontaneous symmetry
breaking within a predefined unit cell of volume given by the
cluster size. To implement the method, we decompose the
chain into Lu, supercells of length Lc. A site i in the original
lattice then corresponds to a supercell R and an orbital index
� running from 1¯Lc such that i=R+a�. Thereby, the vol-
ume of the Brillouin zone is reduced by a factor Lc and the
quantized wave vectors are given by K= 2�

LcLu
n with n

� �−Lu /2,Lu /2�. Within this formulation, the self-energy
and noninteracting Green’s function correspond to Lc	Lc
matrices ��K , i�m� and G0�K , i�m�. The CDMFT approxi-
mation neglects the K dependency of the self-energy;
��K , i�m����i�m�. In analogy to the DMFT approach, one
can extract the self-energy by solving on an Lc cluster the
model at hand subject to a dynamical bath G0�i�m�, which
has to be determined self-consistently. To be more precise,

G�i�m� =
1

G0
−1�i�m� − ��i�m�

=
1

Lu
�
K

1

G0
−1�K,i�m� − ��i�m�

.

�2�

The last equality corresponds to self-consistency. Hence, for
a given bath Green’s function matrix G0�i�m� we use the
DDQMC method to obtain the corresponding self-energy
��i�m� which in turn, owing to Eq. �2�, allows us to compute
a new bath Green’s function. This procedure is repeated until
convergence is reached. Within the DDQMC the self-
consistency is particularly easy to implement as it is possible
to compute the Matsubara Green’s functions directly within
the QMC code thus avoiding the cumbersome transformation
from imaginary time to Matsubara frequencies.

Having determined the self-energy, we compute the lattice
Green’s functions g�k , i�m� and k� �−� ,�� with

g�k,i�m� =
1

Lc
�

�,�=1

Lc

eik�a�−a��� 1

G0
−1�K,i�m� − ��i�m�	�,�

.

�3�

In the above, k=K+m 2�
Lc

with K� �− �
Lc

, �
Lc

�. We use CDMFT
solely to extract the single-particle spectral function. The re-
quired rotation from the imaginary to real time axis is ac-
complished with a stochastic analytical continuation
scheme.18,19

III. NUMERICAL RESULTS

In this section, we present our numerical results at quarter
filling 
=0.5 and phonon frequency �0=0.1t, which places
us in the adiabatic limit, and vary the electron-phonon cou-
pling as well as the temperature. We first consider spin,
charge, and pairing correlations as well as the optical con-
ductivity and then study in detail the temperature depen-
dence of the single-particle spectral function. Two-particle
quantities are obtained from simulations on an L=20 site
lattice. To at best study single-particle properties, we have
used the CDMFT approximation on cluster sizes up to
Lc=12.

To characterize the strength of the electron-phonon inter-
action, we consider the effective-mass renormalization as ob-
tained from the self-energy diagram shown in Fig. 9. For a
flat band of width W, Eq. �A3� yields

m�

m
= 1 + �, � =

g2

2k

2

W
�4�

with � as the dimensionless electron-phonon coupling.

A. Spin and charge static and dynamical structure factors

Equal time charge correlation functions

N�q� = �
r

eiqr�
n̂rn̂0� − 
n̂r�
n̂0�� , �5�

are plotted in Fig. 1�a�. As a function of growing electron-
phonon coupling, the cusp at 2kF=� /2, signaling a power-
law decay of the correlation function,20 evolves toward a
clear peak signaling a dominant 2kF charge modulation at
�=0.35. Note that at the largest considered electron-phonon
coupling, a cusp at a higher harmonic 4kF is equally appar-
ent. A simple interpretation of this charge-density wave
stems form the Peierls instability. For classical phonons the
inherent 2kf nesting instability of one-dimensional systems
renders the metallic state unstable toward a 2kf lattice defor-
mation at arbitrarily small electron phonon coupling. In this
mean-field approach the static lattice deformation triggers
the opening of a charge gap. It has been argued and shown
numerically21 that this situation cannot be carried over to
quantum phonons. In this case, quantum fluctuations destroy
the static lattice deformation and a finite value of the
electron-phonon coupling is required to destabilize the Lut-
tinger liquid. The linear behavior of the charge structure fac-
tor at long wavelengths �see Fig. 1�a�� points to a metallic
state at all considered values of the electron-phonon interac-
tion since it amounts to a power-law decay with modulation
q=0 of the real-space charge correlation function.

Since we have not included a Coulomb repulsion in our
model Hamiltonian, one expects two electrons of opposite
spins to share the same lattice deformation and thereby bind
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to form bipolarons. Figure 1�b� plots the equal time pairing
correlation functions in the on-site s-wave channel

P�r� = 
�̂r
†�̂0�, �̂r

† = ĉr,↑
† ĉr,↓

† . �6�

As apparent, the on-site pairing correlations P�r=0� grow as
the electron-phonon coupling is enhanced from �=0.25 to
0.35. This behavior reflects the formation of bipolarons. On
the other hand and in this coupling range, the long-range
pairing correlations are suppressed reflecting a tendency to-
ward localization of the bipolarons.

The binding of electrons into spin singlets leads to the
suppression of the 2kF spin-spin correlation functions de-
fined by

S�q� = �
r

eiqr
Ŝz,rŜz,0� �7�

and plotted in Fig. 1�c�. At �=0.35 both the q=0 as well as
the q=2kF cusps in the spin structure factor are smeared out
thus lending support to an exponential decay of the spin-spin
correlation.

Finally, the single-particle occupation number

n�k� = �
�


ĉk,�
† ĉk,�� , �8�

is plotted in Fig. 1�d�. As apparent, and on our limited lattice
size L=20, the jump at kF=� /4 is dramatically suppressed
as the electron-phonon interaction grows from �=0.25 to
0.35.

Hence, on the basis of the static quantities, we can con-
clude that a transition between a Luttinger liquid metallic
phase and a spin gaped CDW state occurs in the region

0.25�0.35. We now provide further support for this pic-
ture by examining dynamical two-particle correlation func-
tions.

In the Lehmann representation, the dynamical charge sus-
ceptibility is given by

N�q,�� =
�

Z
�
n,m

e−�Em�
n�n̂q�m��2��En − Em − �� , �9�

where n̂q= 1
�N

� je
iqjn̂j and the sum rule N�q�= 1

�d�N�q ,��
holds. A similar definition holds for the dynamical spin struc-
ture factor S�q ,��.

In the absence of the electron-phonon coupling, both spin
and charge dynamical structure factors are identical and cor-
respond to the well know particle-hole continuum with gap-
less excitations at q=0 and 2kF. Note that at quarter-band
filling, 2kF=� /2. As apparent from the Luttinger liquid
model �see Appendix B�, the phonon mode couples only to
the charge degrees of freedom. At weak couplings �=0.15,
the dynamical charge structure factor in Fig. 2 shows pre-
cisely this feature; the continuum of charge excitations is
supplemented by the dispersionless phonon mode at �0
=0.1t. In the spin sector �see Fig. 3� only the continuum of
two spinon excitations is present.

At larger values of � ��=0.35� and as a consequence of
the bipolaron formation, spectral weight at low energies in
the dynamical spin structure factor is suppressed. In particu-
lar from Fig. 3 we can obtain a rough estimate of the spin
gap at �sp�0.2t at �=0.35. The lattice distortion in the
Peierls phase is accompanied by a softening of the phonon
mode. At �=0.35 �see Fig. 2� we observe a piling up of
spectral weight at very low frequencies with dominant spec-
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FIG. 1. �Color online� �a� Density, �b� pairing, and �c� spin correlation functions as well as �d� the single-particle occupation number as
a function of electron-phonon coupling.
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tral intensity at q=2kF. This low-energy feature corresponds
to the slow charge dynamics of the bipolaronic 2kf CDW
�see Fig. 1�a��.22 The high-energy continuum at �=0.35 in
N�q ,�� is comparable to S�q ,�� at the same coupling. This
similarity confirms that this structure stems from the particle-
hole bubble of dressed single-particle Green’s functions.

We note that phonon dynamics has been studied for the
spinless Holstein model within a projector-based renormal-
ization method23 as well as with exact diagonalization and
cluster perturbation theory �CPT� methods.24 In analogy to
our results, the phonon spectral function reveals not only the
phonon dynamics but also the particle-hole continuum.

Finally we consider the real part of the optical conductiv-
ity

����� =
�

Z�
�
n,m

e−�Em�1 − e−����
n� ĵ�m��2��En − Em − ��

�10�

with ĵ= it�i,��ĉi,�
† ĉi+a,�−H.c.� both at �=0.15 and 0.35. Our

results on an L=20 lattice are plotted in Fig. 4. As apparent
at �=0.15 a Drude feature reflecting polaronic conductivity
is visible. In contrast, at larger electron-phonon couplings,
the formation of the bipolaronic CDW leads to a substantial

suppression of the Drude feature. The suppression of the
Drude weight reflects the very small charge velocity of the
bipolarons. This follows from the continuity equation, which
establishes a relation between the optical conductivity and
the dynamical charge structure factor as follows:

���q,�� =
�

q2 �1 − e−���N�q,�� . �11�

At small momentum transfer, and using the sum rule
1
�d�N�q ,��=N�q�, we can model the dynamical charge
structure factor by N�q ,��=�N�q���vcq−�� with vc as the
charge velocity. From Fig. 1�a� N�q��q in the long-
wavelength limit, and the proportionality constant is to a
good approximation � independent. Inserting this approxi-
mate form into Eq. �11� gives in the zero-temperature limit

lim
q→0

���q,�� � vc���� . �12�

Hence, the suppression of the Drude weight stems from re-
duction in the charge velocity when passing from the Lut-
tinger liquid phase to the bipolaronic CDW phase.
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FIG. 2. �Color online� Intensity plots of the dynamical charge structure factor at �=0.15 �a� and 0.35 �b�. The x axis corresponds to the
momentum q.
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B. Temperature dependence of the single-particle
spectral function

In this subsection we study the details of the temperature
dependence of the single-particle spectral function, both in
the Luttinger and bipolaronic CDW phases.

1. Atomic limit

It is instructive to start with the atomic limit t=0 and in
the absence of spin degrees of freedom,

Ĥ = �ĉ†ĉ + gQ̂n̂ +
P̂2

2M
+

k

2
Q̂2, �13�

where exact solutions for the temperature dependence of the
spectral function are available.25 In particular, at T=0, �see
Fig. 5� the single-particle spectral function is given by

A��� = e−�/�0�
l=0

�
1

l!
��/�0�l��� − �� − � + �0l�� �14�

with �=g2 /2k.
An electron on the energy level couples to the phonon

degrees of freedom and can lower its energy at the expense

of a shift in the ground-state expectation value of Q̂. Thereby

�→�−�, which corresponds to the lowest-energy pole in
A���. Since the ground state contains an infinite number of
phonon excitations, poles at �−�+�0l following a Poisson
distribution are apparent in the single-particle spectral func-
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FIG. 4. �Color online� Optical conductivity in the Luttinger liq-
uid phase and bipolaronic CDW phases. The calculations were car-
ried out with periodic boundary conditions. For this choice of

boundary conditions, the sum rule d������=−�
K̂�, where K̂ is
the kinetic energy, holds only in the thermodynamic limit. In the
plot, we have imposed this sum rule by normalizing the spectra by
an overall factor.
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FIG. 3. �Color online� Intensity plots of the dynamical spin structure factor at �=0.15 �a� and 0.35 �b�. The x axis corresponds to the
momentum q.
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tion. The spectral function is centered around 
��
�d�A���w=� and has a width �
��− 
���2�=��0�. The
relevant energy scale for the temperature behavior of the
spectral function is the phonon frequency �0. As apparent in
Fig. 5 at temperatures in the vicinity of the phonon frequency
a considerable broadening of the spectral function is appar-
ent.

2. Luttinger liquid phase: �=0.25

Figure 6 plots the temperature dependence of the single-
particle spectral function for the Holstein model in the Lut-
tinger liquid phase at �=0.25. We compare our results to the
self-consistent Born �SCB� approximation15 briefly reviewed
in Appendix A. At high temperatures, T /�0�1, the overall
features of the spectral function as obtained from the SCB
compare favorably with the CDMFT calculations. Both show
a broad spectral function centered around the bare electron
energy ��k�−��kF�. As in the atomic limit and at an energy
scale set by the phonon frequency, a substantial narrowing of
the spectral function and reordering of spectral weight is ap-
parent.

As the temperature drops well below the phonon fre-
quency, �t=80, the CDMFT spectral function exhibits sharp
features which are not captured by the SCB approximation.
For instance at � / t�0 and kkF a sharp peak is apparent at
���0 in the QMC spectra and is not present in the SCB
approximation. Of course, the SCB approximation has many
caveats since �i� it does not contain vertex corrections re-
quired in the low-temperature Luttinger liquid phase and �ii�
the phonon propagator is not renormalized such that phonon
softening and signatures of the Peierls transitions are not
included in the approximation. The low-temperature CD-
MFT spectral function at �=0.25 is at best understood within
the framework of bosonization as sketched in Appendix B. In
a first approximation, and deep in the Luttinger liquid phase,
one can neglect backward scattering26 thereby obtaining the
forward-scattering model of Eq. �B10� �Ref. 16� containing
spin, phonon, and charge modes. The spin mode decouples
and the charge and phonon modes mix. At the expense of a
Bogoliubov transformation, the forward-scattering model

can be diagonalized to obtain the dispersion relations shown
in Fig. 7�a�. Gapless spin and polaron modes as well as a
gapfull charge mode are apparent. Since the single-electron
operator can be expressed in terms of the spin and charge
operators,27 one expects signatures of those modes in the
single-particle spectral function. Figure 7�b� plots a closeup
of A�k ,�� at our lowest temperature. Structures following
the coupled gaped charge and polaron modes �vertical lines�
are clearly apparent. According to Fig. 7�a� the spin mode is
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FIG. 5. �Color online� Spectral function as a function of tem-
perature in the atomic limit.
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FIG. 6. �Color online� Single-particle spectral function at vari-
ous temperatures. Panels �a,c,e� are CDMFT calculations on Lc=8
clusters. Panels �b,d,f� provide a comparison with the SCB approxi-
mation �see Appendix A�. The y axis corresponds to the crystal
momentum k.
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next to degenerate with the charge modes and hence difficult
to detect in our numerical calculations.

3. Peierls phase: �=0.35

At larger values of the electron-phonon coupling back-
ward scattering becomes relevant and is at the origin of the

Peierls transition. Figure 8 tracks the temperature depen-
dence of the single-particle spectral function at �=0.35,
which places us in the Peierls phase. At high temperatures,
1 /���0, the overall features can again be well accounted
for within the SCB approximation reviewed in Appendix A.
Upon cooling �see the �t=20 data set in Fig. 8� a narrow
polaronic band crosses the Fermi energy, and gaped higher-
energy excitations show precursor features of back folding.
This data set shows remarkable similarities with the features
observed in the Luttinger liquid phase thereby suggesting
that aspects of the Luttinger liquid spectral functions are ap-
parent at finite temperatures above the crossover to the
Peierls phase. At our lowest temperature, the narrow po-
laronic band develops a gap of the order 2�qp�0.2t, giving
rise to rather dispersionless features in the spectral function
at ��0.1t. We interpret those features in terms of the for-
mation of the bipolaronic CDW. Here, removing an electron
costs the bipolaron binding energy. The fact that the spin gap
at �=0.35 as obtained from Fig. 3 matches 2�qp confirms
this interpretation.

C. Interpretation in terms of a transition
from a Luttinger to a Luther-Emery liquid

A very natural account of the above-presented data stems
from a transition between Luttinger and Luther-Emery liq-
uids. The Luther-Emery liquid description of the Peierls
phase has been put forward by Voit.14 Within this framework
and away from half filling, umklapp processes leading to a
charge gap are absent. Note however that at quarter band
filling, second-order umklapp processes are allowed and will
lead to a charge gap provided that the interactions are strong
enough such that K
1 /4.28 Here we omit this possibility
since it does not naturally explain our numerical data on
small lattices and ��0.35. Backward scattering on the other
hand is present and if relevant can lead to the opening of a
spin gap leaving the charge sector gapless. This corresponds
to the Luther-Emery liquid.

The Luttinger liquid fix point is characterized by domi-
nant forward-scattering processes and the asymptotic behav-
ior of correlation functions is governed by single dimension-
less quantity K
. Neglecting logarithmic corrections29 the
correlation functions read


n�r�n�0�� =
K


��r�2 + A1 cos�2k fr�r−1−K
 + ¯

+ A2 cos�4k fr�r−4K
,


S�r�S�0�� =
1

��r�2 + B1 cos�2k fr�r−1−K
 + ¯ ,


�†�r���0�� = Cr−1−1/K
 + ¯ . �15�

Logarithmic corrections do not show up in the first term of
the charge-charge correlation functions29 and hence allow an
efficient determination of K
 via
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FIG. 7. �Color online� Dispersion relation of spin and mixed
phonon and charge modes as obtained from the Luttinger liquid
forward-scattering Hamiltonian of Eq. �16�. Here we have set �
=0.25, �0=0.1t, and kF=� /4 as appropriate for quarter filling. For
the purposes of comparison with the QMC data, we have taken the
liberty of replacing vFk by −2t cos�ka�+2t cos�kFa�.
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K
 = � lim
q→0

dN�q�
dq

. �16�

From our data on an admittedly small lattice L=20, we ob-
tain from the above equation

K
 = 1.0341 � 0.0006 at � = 0.15,

K
 = 1.0441 � 0.0002 at � = 0.25. �17�

Since K
�1 one would conclude that the Luttinger liquid
phase is characterized by dominant superconducting correla-
tions.

The Luther-Emery liquid has correlation functions which
read


n�r�n�0�� =
A0

r2 + A1 cos�2k fr�r−K
 + ¯

+ A2 cos�4k fr�r−4K
,


�†�r���0�� = Cr−1/K
 + ¯ , �18�

and an exponential decay of the spin-spin correlations.30 As-
suming the validity of the above, we can deduce a rough
estimate of the value of K
 in the Luther-Emery phase. Since
our data at �=0.35 shows dominant 2kf charge fluctuations,
we conclude that K
1 in the Peierls phase. A more precise
upper bound for K
 can be obtained by comparing the pairing
correlation functions at �=0.25 in the Luttinger liquid phase
and at �=0.35. At �=0.25, K
 is slightly larger than unity
such that the pairing correlations fall off as r−1.958. As appar-
ent from Fig. 1�b�, the pairing correlations at �=0.35 in the
Luther-Emery phase fall off quicker, thus implying K


1 /2 in the Luther-Emery phase at �=0.35. This upper
bound K
1 /2 equally implies a subdominant 4kf charge
density decaying more slowly than r−2. The observed 4kf
cusp in the static charge structure factor at 4kf and �=0.35
�see Fig. 1�a�� is consistent with this remark.

IV. CONCLUSIONS

In this section we have used a generalization of the dia-
grammatic determinantal QMC algorithm to investigate the
physics of the quarter filled one-dimensional Holstein model.
We have used the algorithm for lattice simulations to extract
two-particle quantities in the context of CDMFT to investi-
gate the temperature dependence of the single-particle spec-
tral function both in the Peierls and Luttinger liquid phases.

Our results are naturally interpreted in terms of a transi-
tion from Luttinger to Luther-Emery liquid. The Luttinger
liquid phase has a K
, which is marginally greater than unity
such that pairing correlations are dominant. In our consid-
ered phonon frequency �0 / t=0.1, the Luther-Emery phase is
characterized by K
1 /2 and thereby by dominant 2kf
charge fluctuations. At even larger values of � than consid-
ered in this paper, one can expect K
 to drop below the 1/4
threshold triggering the opening of a gap also in the charge
sector via second-order umklapp. Hence at this commensu-
rate filling and adiabatic phonon frequency, we can speculate
the phase diagram as a function of � to not only show tran-

-1 -0.5 0 0.5 1

3π/8

kF

π/8

0

ω /t

Lc=12, A(k,ω), βt = 7.5, λ=0.35

-1 -0.5 0 0.5 1

3π/8

kF

π/8

0

ω /t

Lc=12, A(k,ω), βt = 20, λ=0.35

-1 -0.5 0 0.5 1

3π/8

kF

π/8

0

ω /t

Lc=12, A(k,ω), βt = 40, λ=0.35

(b)(a)

(c) (d)

(f)(e)

FIG. 8. �Color online� Temperature dependence of the single-
particle spectral function in the Peierls phase. The results stem from
CDMFT on an Lc=12 cluster. The left panels correspond to loga-
rithmic intensity plots with scale given in Fig. 6. The right panels
show the spectral function in a narrow window around the Fermi
energy and momentum. Here, we have normalized the maximal
peak height to unity, and the total weight under the spectral function
is given by −�

� d�A�k ,��=�.
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sition between Luttinger and Luther-Emery liquids but also
at ��0.35 a transition from the Luther-Emery phase to a
fully gaped phase both in the charge and spin sectors. One
equally expects the character of the Luther-Emery phase to
very dependent on the phonon frequency. In the antiadiabatic
limit the Holstein model maps onto the attractive Hubbard
model where superconducting correlations are dominant
such that K
�1.

Our calculations equally reveal the rich temperature de-
pendence of the single-particle spectral functions. We can
access a temperature range covering the domain of validity
of the self-consistent Born approximation in the high-
temperature limit down to temperatures where the Luttinger
liquid or Luther-Emery fix points are relevant. The tempera-
ture dependence in the Luther-Emery phase interestingly
shows that above the temperature scale at which the single
gap opens at the Fermi energy, features of the Luttinger liq-
uid phase, namely, a polaronic band crossing the Fermi en-
ergy and a gaped charge mode are apparent. This observation
should be set in the context of photoemission experiments
carried out on TTF-TCNQ organics where measurements are
carried out at a temperature scale above the Peierls transition
and interpreted in terms of a Luttinger liquid model.1,3–5
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APPENDIX A: SELF-CONSISTENT BORN
APPROXIMATION

For the Holstein model given by Eq. �1�, the self-energy
diagram shown in Fig. 9 can be evaluated to give

�1�i�m� =
g2

2k
�0

1

L
�

k
�nB��0� + 1 − f���k��

− ��k� − �0 + i�m

+
nB��0� + f���k��
− ��k� + �0 + i�m

� . �A1�

Here, f���k��= 1
e���k�+1

is the Fermi function �note that we
have included the chemical potential in the very definition of
��k��, nB��0�= 1

e��0−1
is the Bose-Einstein distribution, and

�0=� k
M is the phonon frequency. At zero temperature and

for real frequencies, the imaginary part of the self-energy
takes the form

Im �1��� = −
g2

2k
�0

�

L
�

k
�����k����− ��k� − �0 + ��

+ ��− ��k����− ��k� + �0 + ��� . �A2�

The first �second� term in Eq. �A2� corresponds to absorption
�emission� of a phonon. Energy conservation as well as
phase-space limits those processes to energy range ���0
for absorption and �−�0 for emission. Hence at T=0 and
in a region of width 2�0 centered around the Fermi energy,
the imaginary part of the self-energy vanishes. In this range
the single-particle Green’s function has poles defining a dis-
persion relation with effective mass,

m�

m
= �1 −

� Re � ���

��
	

�=0

−1

�A3�

To obtain a good agreement with the high-temperature
quantum Monte Carlo data we sum up the noncrossing self-
energy diagrams. This amounts to solving the set of self-
consistent equations

G�k,i�m� =
1

G0
−1�k,i�m� − ��i�m�

,

��i�m� =
g2�0

2k

1

�L �
k,i�m

D�i�m�G�k,i�m − i�m� . �A4�

Here, D�i�m�= 1
�0+i�m

+ 1
�0−i�m

is the bare phonon propagator
and �m is a bosonic Matsubara frequency. Since at a given
iteration we do not have at hand the pole structure of
G�k , i�m� in the complex-frequency plane, it is more conve-
nient to solve the above equations numerically for real fre-
quencies. To do so, we use the spectral representation of the
Green’s function

G�k,i�m� =� d��
A�k,���

i�m − i�m − ��
, �A5�

where A�k ,���=− 1
�Gret�k,���. With this choice and N����

� 1
L�kA�k ,��� the self-energy reads

��i�m� =
g2

2k
�0� d��N�����nB��0� + 1 − f����

− �� − �0 + i�m

+
nB��0� + f����
− �� + �0 + i�m

� . �A6�

At a given iteration step at which N��� is known we can
compute with the above equation the self-energy on the real
frequency axis �i�m→�+ i�� and thereby recompute the
single-particle Green’s function and corresponding N���.
Typically, for the considered parameter range, ten iterations
suffice to achieve convergence.

FIG. 9. Self-energy diagrams included in the self-consistent
Born approximation. The solid �wavy� lines correspond to the bare
single-particle Green’s function �phonon propagator�.
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This approximation has many caveats. Since the phonon
propagator is not renormalized, phonon softening and hence
the Peierls transition is absent. At low temperatures, in the
metallic phase, one equally expects the approximation to fail
since it does not contain vertex corrections necessary to pro-
duce the Luttinger liquid physics.

APPENDIX B: LUTTINGER LIQUID

At low temperatures the self-consistent Born approxima-
tion does not capture the expected Luttinger behavior of the
one-dimensional Holstein model. Neglecting backward
scattering—an approximation which one can justify in the
Luttinger liquid phase—exact solutions at asymptotically
low-energy scales are possible. Here, we briefly outline the
steps. With the bosonic raising and lowering operators

âi =
�0MQ̂i + iP̂i

�2�0M
�B1�

satisfying the bosonic commutation rules �âi , âj
†�=�i,j, the

Holstein model reads

Ĥ = �
k,�

��k�ĉk,�
† ĉk,� + �0�

q
âq

†âq

+
g

�2�0M

1
�L

�
q

ĉk,�
† ĉk+q,��âq

† + â−q� �B2�

where the Fourier transform is defined as

ĉk,�
† =

1
�L

�
i

eikiĉi,�
† �B3�

with an equivalent definition for the bosonic phonon opera-
tors âq.

Linearization around the Fermi points and introducing left

�L̂k,�� and right �R̂k,�� fermionic creation operators yield the
effective low-energy form for the kinetic-energy term

�
k,�

��k�ĉk,�
† ĉk,� → �

k,�
vFk�R̂k,�

† R̂k,� − L̂k,�
† L̂k,�� �B4�

which on its bosonized form reduces to

�
q,�

vF�q�b̂q,�
† b̂q,�

with

b̂q,� = ��
2�

�q�L�
1/2

�k
R̂k,�

† R̂k+q,� q � 0

� 2�

�q�L�
1/2

�k
L̂k,�

† L̂k+q,� q  0� �B5�

and

�b̂q,�, b̂q�,��
† � = �q,q���,��. �B6�

After linearization the electron-phonon interaction, in
terms of left and right movers, reads

g
�2�0ML

�
q,k,�

�L̂k,�
† R̂k+q,��âq+2kf

† + â−q−2kf
� + R̂k,�

† L̂k+q,��âq−2kf

†

+ â−q+2kf
� + �L̂k,�

† L̂k+q,� + R̂k,�
† R̂k+q,���âq

† + â−q�� . �B7�

The first two terms correspond to backward-scattering pro-
cesses which lead to enhanced 2kf charge fluctuations, an
enhanced effective mass, and ultimately to the Peierls phase.
To obtain a first description of the Luttinger liquid phase, we
omit them thereby obtaining a solvable model with only
forward-scattering processes; that is,

ĤLL = �
q,�

vF�q�b̂q,�
† b̂q,� + �0�

q
âq

†âq +� g

2�0M�

1
�2

�
q,�

�q�

	�b̂−q,�
† + b̂q,���âq

† + â−q� . �B8�

With spin and charge densities defined as

�̂q =
1
�2

�b̂q,↑ − b̂q,↓� ,


̂q =
1
�2

�b̂q,↑ + b̂q,↓� , �B9�

ĤLL takes the form

ĤLL = �
q

vF�q��̂q
†�̂q + �

q
vF�q�
̂q

†
̂q + �0�
q

âq
†âq

+� g

2�0M�
�

q
�q��
̂−q

† + 
̂q��âq
† + â−q� . �B10�

As apparent, the spin mode decouples and the charge and
phonon modes mix. A Bogoliubov transformation diagonal-
izes the Hamiltonian and reveals the dispersion relation of
those modes �see Fig. 7�.

1 M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J. M. P.
Carmelo, L. M. Martelo, P. D. Sacramento, M. Dressel, and C.
S. Jacobsen, Phys. Rev. B 68, 125111 �2003�.

2 L. Cano-Cortés, A. Dolfen, J. Merino, J. Behler, B. Delley, K.
Reuter, and E. Koch, Eur. Phys. J. B 56, 173 �2007�.

3 H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett.
92, 256401 �2004�.

4 A. Abendschein and F. F. Assaad, Phys. Rev. B 73, 165119
�2006�.

5 N. Bulut, H. Matsueda, T. Tohyama, and S. Maekawa, Phys.
Rev. B 74, 113106 �2006�.

6 G. Shirane, S. M. Shapiro, R. Comès, A. F. Garito, and A. J.
Heeger, Phys. Rev. B 14, 2325 �1976�.

7 A. H. Castro Neto, Phys. Rev. Lett. 86, 4382 �2001�.

F. F. ASSAAD PHYSICAL REVIEW B 78, 155124 �2008�

155124-10



8 S. V. Borisenko, A. A. Kordyuk, A. N. Yaresko, V. B. Zabolot-
nyy, D. S. Inosov, R. Schuster, B. Buchner, R. Weber, R. Fol-
lath, L. Patthey, and H. Berger, Phys. Rev. Lett. 100, 196402
�2008�.

9 Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 �1996�.
10 J. L. Smith and Q. Si, Phys. Rev. B 61, 5184 �2000�.
11 A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B

72, 035122 �2005�.
12 F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116 �2007�.
13 G. Biroli, O. Parcollet, and G. Kotliar, Phys. Rev. B 69, 205108

�2004�.
14 J. Voit, Eur. Phys. J. B 5, 505 �1998�.
15 S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 �1963�.
16 V. Meden, K. Schönhammer, and O. Gunnarsson, Phys. Rev. B

50, 11179 �1994�.
17 S. Hochkeppel, F. F. Assaad, and W. Hanke, Phys. Rev. B 77,

205103 �2008�.
18 A. W. Sandvik, Phys. Rev. B 57, 10287 �1998�.
19 K. S. D. Beach, arXiv:cond-mat/0403055 �unpublished�.

20 F. F. Assaad and D. Würtz, Phys. Rev. B 44, 2681 �1991�.
21 H. Fehske, M. Holicki, and A. Weisse, Advances in Solid State

Physics �Spinger, Berlin, 2000�, Vol. 40, pp. 235–250.
22 This slow dynamics of the bipolarons is at the origin of long

autocorrelation times observed in the QMC simulations at large
values of �.

23 S. Sykora, A. Hübsch, and K. W. Becker, Europhys. Lett. 76,
644 �2006�.

24 M. Hohenadler, G. Wellein, A. R. Bishop, A. Alvermann, and H.
Fehske, Phys. Rev. B 73, 245120 �2006�.

25 G. D. Mahan, Many-Particle Physics, 2nd ed. �Plenum, New
York, 1990�.

26 J. Voit and H. J. Schulz, Phys. Rev. B 34, 7429 �1986�.
27 T. Giamarchi, Quantum Physics in One Dimension �Clarendon,

Oxford, 2004�.
28 T. Giamarchi, Physica B �Amsterdam� 230-232, 975 �1997�.
29 H. J. Schulz, Phys. Rev. Lett. 64, 2831 �1990�.
30 M. Troyer, H. Tsunetsugu, T. M. Rice, J. Riera, and E. Dagotto,

Phys. Rev. B 48, 4002 �1993�.

SPIN, CHARGE, AND SINGLE-PARTICLE SPECTRAL… PHYSICAL REVIEW B 78, 155124 �2008�

155124-11


